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Overview

b physics at the Tevatron

b fragmentation measurements at LEP/SLD

How is this related?

Disclaimer:
Demonstrate impact of the recent LEP/SLD b fragmentation measurements
on Tevatron physics —
these measurements are not only relevant for old-fashioned e+e− colliders!
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Overview

b physics at the Tevatron

b fragmentation measurements at LEP/SLD

How is this related?

Disclaimer:
KH ∈ D0 masthead
KH ∈/ D0 author list
Guess why?
The statements on Tevatron physics in this talk are outside non-expert views!
Important oversights, misconceptions etc. are to be expected!
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b Physics at the Tevatron

CP violation (Bs!)

rare decays

lifetimes/mixing

cross-sections

spectroscopy

PLUS: b physics as a tool for “heavier” topics

top

Higgs

SUSY

How can LEP/SLD measurements help?
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Impact of LEP/SLD physics on the Tevatron

Example: b production cross-section as measured in Tevatron Run I
(left: D0 and CDF; right: CDF, hep-ph/0111359):
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Is this new physics or a systematic bias?

LEP/SLD can help to understand this due to simpler event structure
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Impact of LEP/SLD physics on the Tevatron

Prediction of b production cross-section at the Tevatron:

Structure functions → specific number of b’s at specific energy

Hadronisation effects→ shift b energies downward

Efficiency → usually depends on energy distribution!
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Impact of LEP/SLD physics on the Tevatron

Structure functions → specific number of b’s at specific energy

Efficiency → usually depends on energy distribution!

These two are collider-/detector-specific. No good topic for this talk.
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Impact of LEP/SLD physics on the Tevatron

Hadronisation effects→ shift b energies downward

This is presumed to be universal! Let LEP/SLD help.
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Impact of LEP/SLD physics on the Tevatron

If hadronization effects are a problem,
the cross-section over the jet momentum should show better agreement than
the cross-section over the b hadron momentum.

This seems to be the case!→ look at LEP/SLD D0, hep-ex/0008021
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This part looks different at the Tevatron This part shouldn’t

factorisation at
arbitrary boundary!
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PLAN

constrain hadronisation at LEP/SLD

plug results into models for the Tevatron

see what happens

This has been done before!
Old and very simple measurements, only part of the LEP/SLD dataset

...maybe we should try again?
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LEP/SLD did it again!

New round of b fragmentation/hadronisation measurements 2000–2003

Use as input for Tevatron physics is only one benefit.
True egoistic motivation:

hadronisation effects are huge systematic uncertainty at LEP/SLD

understanding the origin of mass!

non-perturbative QCD accounts for
almost all visible mass in the universe,
not the Higgs!

Kristian Harder, Kansas State University 13



Quantitative description of hadronisation

consider energy fraction transferred from quark to hadron
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hadronisation models describe f(z):

z = energy of primary hadron

energy of quark prior to hadronisation

model-dependent, not a nice observable!
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f(z): fragmentation functions (should be: “hadronisation functions”)

Peterson et al. f(z) ∝ 1

z(1−1
z− ε

1−z
)2

→ estimation of transition matrix element by energy difference

Collins/Spiller f(z) ∝ (1−z

z
+ (2−z)ε

1−z
)(1 + z2)(1− 1

z
− ε

1−z
)−2

→ from correspondence to heavy meson structure functions

Kartvelishvili et al. f(z) ∝ zα(1− z)

→ from correspondence to different model of heavy meson structure functions

Lund symmetric f(z) ∝ 1
z
(1− z)a exp(−bm2

t

z
)

→ symmetry wrt. start of string hadronisation at either end of the string

Bowler f(z) ∝ 1

z
1+bm2

t

(1− z)a exp(−bm2
t

z
)

→ constant probability per length and time for qq creation on the string
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z = energy of primary hadron

energy of quark prior to hadronisation
not directly measureable:

– energy of quark prior to hadronisation (after fragmentation) not observable

– further problem: b hadron easily identified in weak decay (lifetime, mass)
– but: weakly decaying hadron 6= primary hadron
– but: frequent creation of excited hadrons + cascade decays

e

e

−

+
B

D

Z
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Alternative variable: xwd
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xwd

z = energy of primary hadron

energy of quark prior to hadronisation

replace:

primary hadron
→ weakly decaying hadron

quark energy prior to hadronisation
→ energy at qq creation
→ (at 90 GeV: ≈ beam energy)

xwd = energy of weakly decaying hadron

beam energy

“scaled energy”

measure energy distribution of weakly decaying hadrons
correspondence to hadronisation model: Monte Carlo
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Typical measurements of the B hadron energy distribution

reconstructed B hadrons data sample energy resolution

exclusive semileptonic decays (B→D(∗)`ν) small ≈ 5%
inclusive semileptonic decays (B→ `+X) large > 10%
inclusive (decay vertices etc.) very large ≈ 10%

total number of B hadrons created at LEP: ≈ 2 million per experiment

total number of B hadrons created at SLD: ≈ 0.2 million

total number of B hadrons (TESLA GigaZ: several 100 million)

examples: recent measurements of the mean scaled energy 〈xwd〉:

B→D(∗)`ν ALEPH 2001 〈xwd〉 = 0.716± 0.006(stat)± 0.006(syst)
B→ `+X OPAL 1999 〈xwd〉 = 0.709± 0.003(stat)± 0.013(syst)
inclusive SLD 2002 〈xwd〉 = 0.709± 0.003(stat)± 0.004(syst)
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LEP/SLD b fragmentation analyses

To be presented here:

ALEPH: Phys. Lett. B512 (2001) 30.
SLD: Phys. Rev. D66 (2002) 092006, Erratum ibid. D66 (2002) 079905.
OPAL: hep-ex/0210031, submitted to Eur. Phys. J. C
DELPHI: DELPHI 2002-069 CONF 603. (preliminary)
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ALEPH: B meson reconstruction

exclusive B meson decays:
B→ D

(∗)`ν

• `: either e or µ

• five D
(∗) channels:

D∗+
→D0π+,

��→K−π+

��→K−π+π+π−

��→K−π+π0

D+
→K−π+π+

D0
→K−π+

• ν energy := missing energy

B energy resolution: 3–5%
≈3400 candidates
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SLD: inclusive B hadron reconstruction

inclusive B energy reconstruction
from vertex flight direction
and charged B decay products

primary vertex

B decay vertex
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P0

P t

P t

charged momentum

missing momentum

P0l

Pchl

B flight direction

B energy resolution: 10%
≈4200 candidates
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DELPHI, OPAL: inclusive B hadron reconstruction

inclusively identify and reconstruct

B hadrons from

• weak B hadron decay vertices

• leptons from weak B hadron decay

• charged and neutral decay products

using Artifical Neural Nets, Likelihoods

(OPAL: xrec
wd

; DELPHI: xrec
wd

, xrec
L

, zrec)

DELPHI: B energy resolution: O(10%)
≈230,000 candidates

OPAL: B energy resolution: O(10%)
≈270,000 candidates
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Example: OPAL

θ ϕ
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pressure vessel

Time of flight
detector

Presampler

Silicon tungsten
luminometer

Forward
detector

vertex detector hit resolution
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√

E
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Sg

Selection and reconstruction
of B hadrons

• selection of b jets

• reconstruction of B decay vertex

• selection of B hadron decay products
artificial neural nets identify tracks and
clusters from B decays

• estimation of the B hadron energy
weighted sum over all selected
tracks and clusters (weight = ANN output)

reconstruction efficiency: 16%
background contamination: 4%
energy resolution ≈ 10%
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Jet-wise b-tag à la OPAL Higgs searches

Jet Finding

Sub−Jet Finding 
in given Jet

Impact 
Variables Vertex
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Track and cluster weight calculation

neural nets calculate
B hadron weights
for each track and cluster
in the hemisphere
defined by the jet axis

(Figure from
Michael Thiergen)
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Energy resolution x
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Chi2 / ndf =   253 / 94

 51.87 ±Core Ampl =  4943 

 0.01406 ±Core Mean = -1.641 

 0.02233 ±Core Width =  2.35 

  58.1 ±Tail Ampl =  3319 

 0.02782 ±Tail Mean = -0.0202 

 0.03236 ±Tail Width = 5.184 

good measurement of the B hadron energy

sensitive to hadronisation models

comparison of models with data:
• tune important Monte Carlo

parameters to data
• reweight f(z) in Monte Carlo to

desired fragmentation function
• fit fragmentation function

parameters to data
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Energy distribution ⇐⇒ hadronisation models

two main methods to derive information about hadronisation
from the hadron energy distribution:

• comparison of xwd distribution with model predictions

• determination of model-independent parameters of the xwd distribution
• e.g. mean scaled energy, 〈xwd〉

both methods used in all presented analyses
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Results of model tests
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LEP/SLD 2001/2002: normalized χ2/d.o.f. probabilities

 prob.)2χlog(normalised 

-14 -12 -10 -8 -6 -4 -2 0

Bowler
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UCLA

Kartvelishvili et al.

Peterson et al.

BCFY

Collins-Spiller

ALEPH
SLD
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DELPHI

underflow

same ranking seen by all experiments!!! Herwig 5/6: tested by OPAL+SLD, but disfavored

THIS IS IMPORTANT INPUT FOR QCD STUDIES!
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Problems with model-dependent energy spectrum fits

Fragmentation function parameters for specific models
• provide insufficient information for future model-builders
• depend strongly on (perturbative) fragmentation setup in MC

→ difficult to transfer results to e.g. hadron collider MC
but this is how it was done for Run I b cross-section measurements!

even worse:
look at description of B hadron energy distribution D(x) in terms of moments

Di =

∫ 1

0

dx xi−1D(x)

D1 = 1, D2 = 〈xwd〉
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Problems with model-dependent energy spectrum fits

Model-dependent fragmentation function fits give good description of
D2 (mean),
D3 (width) of the spectrum
Modelling of higher moments is usually BAD!
Hadron colliders: D4±1 most important

do NOT fit parameters like Peterson ε and use them in hadron collider MC
...but this is how it was done for Run I b cross-section measurements!

instead:
LEP/SLD have to provide model-independent measurement of higher moments

Di =

∫ 1

0

dx xi−1D(x)
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Hadronisation tuning for the Tevatron

fit hadronisation parameters to moments, not to xwd shape

(M. Cacciari, hep-ph/0205326; “N=2 fit” using Kartvelishvili et al.)
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M. Cacciari

��
��

xWould you experimentalists
please finally provide us with

model-independent
measurements of higher

moments of the B hadron energy
spectrum?!?

Well, we (ALEPH, DELPHI, OPAL, SLD) did ...
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Model-independent description of the B hadron energy spectrum

Cannot take moments from raw measured xwd distribution:
• energy dependent efficiency
• finite detector resolution
• energy dependent reconstruction bias

reconstruction of the true energy distribution by unfolding
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unfolding algorithms: RUN (Blobel), SVD-GURU (Kartvelishvili, Hocker)
(DELPHI, OPAL) (≈ALEPH, OPAL, ≈SLD)
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Unfolded scaled energy distribution (OPAL)

unfolded energy distribution with error band subsample consistency check
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Unfolding result (OPAL)

mean scaled energy of weakly decaying B hadrons:

〈xwd〉 = 0.7193± 0.0016(stat)+0.0036
−0.0029(syst)

dominant systematic uncertainties:
— detector resolution modeling (mainly calorimeter)

— unfolding with different MC types (detector simulation!)

very good agreement
with second unfolding method
(〈xwd〉 = 0.7195± 0.0015(stat))

good agreement with model fit results
Bowler 0.7207± 0.0008± 0.0028,
Lund symmetric 0.7200± 0.0008± 0.0028,
Kartvelishvili et al. 0.7151± 0.0006± 0.0021
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Overview of 〈xwd〉 measurements
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Moments of the energy distribution

values from *very* preliminary
LEP/SLD combination
(P. Roudeau, E. Ben Haim):

D1 = 1 (definition)
〈xwd〉 = D2 = 0.7151± 0.0025

D3 = 0.5426± 0.0012
D4 = 0.4268± 0.0010
D5 = 0.3440± 0.0017

back to Tevatron!
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Cacciari/Nason fit to fragmentation function

before after

...unfortunately not yet using the new LEP/SLD results
(which will make the prediction slightly larger)
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Cacciari/Nason fit to fragmentation function

before after
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Ratio of data and theory reduced from 2.9 to 1.7

...unfortunately not yet using the new LEP/SLD results
(which will make the prediction slightly larger)

Kristian Harder, Kansas State University 41



Summary

LEP/SLD are collecting their final b hadronization measurements

results compatible with older analyses, but much more precise

hadronization models can be clearly distinguished for the first time

Tevatron: agreement between b cross-section prediction and measurement

if these results are applied correctly

better have a e+e− machine complementing your favourite hadron collider!
(This was the obligatory statement on a next generation linear collider.)
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